Engineering

In a small scale multi-family residential project, I'd like to use a wood truss floor-ceiling assembly to achieve a one hour separation between units. I'd like to directly attach the drywall to the underside of the trusses & use the truss space for ducts & lighting (the floor above will be lightweight concrete on plywood sub-floor). UL assemblies do not seem to address the duct/light penetrations in such an assembly. Can I achieve a one-hour rating in such an assembly and how are penetrations addressed? Can the ducts in the truss space serve both units above and below?

I have been hired by an insurance company to determine the extent of damage to roof trusses exposed to fire. How much fire damage compromises the structural integrity of the truss?

I am looking for information on point loading trusses. We manufacture mounting structures for solar panels. Typically, 10 to 15 sq. ft. of solar panel is supported by one standoff. Under extreme conditions – 50 lbs. per sq. ft. of wind load - we can transfer 500 to 750 lbs. of force onto one point of one truss. Are there any standards on this issue?

The industry suggests notching the gable end truss to support the overhang. Is this wise? What about a structural gable, or a gable designed with drag loads, or one with only partial bearing? How safe is it for a framer working with a truss that has the top chord cut repeatedly?

I am a building inspector and I have a question on information provided on truss design drawings. What does the uplift reaction number represent? Some manufacturers are very specific and state “to provide for mechanical connection of the truss to the top plate with a connector capable of withstanding a specific load.” Others simply list the uplift reaction with no further information. These are the ones that have caused a debate as to what the number actually represents.

If trusses blew down from insufficient temporary bracing and the contractor put them back up without the knowledge of the truss manufacturer and gave the truss manufacturer a letter stating that the trusses were okay, is that sufficient? Do you know of any truss manufacturer who would accept this?

My company supplied roof trusses for a hotel project. The building inspector shut the project down because the trusses were not designed to account for additional snowdrift loading. The construction plans did not contain any snowdrift loading information. The architect is claiming it is our responsibility to determine drift loading, therefore we must fix the problem. Do you have any documentation to help us dispute the architect’s claim?

I am reviewing a truss package that includes multi-ply trusses. Where do I find the requirements for the attachment of the individual trusses to each other (nails and/or bolts)? Is this a requirement that the structural engineer of record needs to supply or is it the responsibility of the truss manufacturer to design?

I have mono trusses on either side of a firewall. I have the fire rating/wall material between them. Can I place a ridge vent above these two? Or should I use vents? How do I calculate the appropriate vent sizes and styles?

I am installing a 40-foot scissor truss that is designed to deflect about ½ inch. I am concerned that the deflection will cause an interior partition wall to pick up some load from the truss and transfer it to the floor system. Should I double up the I-joists under this partition to pick up the extra load?