Non-Residential Codes (IBC)

The following is a summary of code change proposals to the 2018 International Building Code (IBC) which have been submitted by various foam plastic insulation associations, including the FSC, XPSA, PIMA, and CPI. 

Since FRTW studs are allowed in wall assemblies that are otherwise defined as non-combustible, building and truss designers often confront the question does a joint between the wall and the roof or floor assembly mean that those elements of the building also require noncombustible material, like FRTW? To answer this, we need to study the IBC

This presentation seeks to explain how to correctly apply live loads to the bottom chord of trusses for uninhabitable attics in accordance with IRC Table R301.5 and IBC Table 1607.1 and ASCE 7-10 Table 4-1.

This presentation provides information on changes to ASCE 7-16 relating to wind loading.

This presentation provides an overview of fire-rated assemblies that include wood trusses. Topics covered include assembly testing, Harmathy’s rules, and an examination of fire performance in the field. 

We have a local builder wishing to use floor trusses with a 2-hour assembly. I have shown him the 2-hour design on pages 17-27 of the second edition of SBCA’s Metal Plate Connected Wood Truss Handbook. Is this assembly UL approved? If so, what is the design number?

As an engineer, I have noticed truss designers in some high wind states routinely using “Main Wind-Force Resisting Systems” wind pressure coefficients as opposed to “Components and Cladding” coefficients to design for wind uplift. A roof truss is not a main wind-force resisting system and would have to have a tributary area of more than 1000 sq. ft. before qualifying for the lower Primary Frame coefficients. In my experience this practice is routine.

I was wondering if you have any information or anecdotes relating to the deflection performance of long span scissors trusses? We recently sold a job with 70 ft. long scissors trusses. The customer is in the process of installing the trusses and doesn't like the deflections he is seeing. To make matters worse, the scissors trusses are framing into a valley set (which we provided) that is erected on 35 ft. Howe trusses. The Howe trusses are exhibiting very little deflection. Any ideas?

The Corps' guide spec for wood construction requires the drawings to indicate the design forces on each truss member for the worst loading condition. Loading conditions, of course, can include wind, snow build up, and unbalanced loading, to name a few. Many A/E firms submit drawings lacking these member forces, but instead show typical loading conditions. What does the wood truss fabricator want to see – truss diagrams with maximum loads on each member? Or would he prefer to design the truss from many required loading diagrams?

We have been specifying laminated veneer lumber (LVL) beams for some time now. The plans usually state, “Beam to be engineered and supplied by truss manufacturer.” What kind of liability issues do I need to watch out for?