We are planning to add 1/2 in. cement board and 3/8 in. quarry tile to a kitchen floor. We need to know if the floor trusses will handle the additional weight. The floor trusses are 19.2 in. O.C. and the loading numbers are 40-10-0-5. What do these numbers mean?

Our home caught fire last month and burned partly through a tongue and groove ceiling to the trusses. Some are charred. Our contractor did a moisture meter test. An engineer for the insurance company said the trusses were only smoke damaged & the moisture meter test is invalid (it can be set to read anything). I found one article on charred trusses, but it’s pretty vague. We do not feel safe with the insurance engineer’s assessment because some of the trusses are obviously charred. We hired an engineer who agreed with us.

Is a Class A fire rating (provided by our liquid spray-on fire retardant) acceptable in certain situations?

I am looking for a 1-hour roof/ceiling assembly for wood truss construction. I would like to apply the drywall directly to the bottom of the truss and also have insulation for sound control. Is this possible without using channels and what UL number would I use?

We have a local builder wishing to use floor trusses with a 2-hour assembly. I have shown him the 2-hour design on pages 17-27 of the second edition of SBCA’s Metal Plate Connected Wood Truss Handbook. Is this assembly UL approved? If so, what is the design number?

I have a 29 x 72 mobile office with a 2-foot deep wooden truss above the ceiling that a client is required to sprinkler. Is there any way to avoid sprinklering above the gypboard ceiling?

Does the NFPA sprinkler standard address sprinkler loading? If so, how and where do I buy it? What other information do you have on sprinkler loading? How do other truss companies price jobs for sprinkler loading the plans do not include a sprinkler layout or even say what size/type of sprinkler system will be used?

I am thinking of using wood trusses for the roofing/ceiling structural systems on some houses I shall build. I remember, though, an engineer/volunteer fireman commenting back in 1989 that the connector plates are prone to expand and pop off, early on in a fire, causing catastrophic structural failure. Was this the case, and if so, has this problem been corrected?

How do you evaluate whether a metal plate connected truss is still usable after exposure to fire? Are there any recommended tests?

In a small scale multi-family residential project, I'd like to use a wood truss floor-ceiling assembly to achieve a one hour separation between units. I'd like to directly attach the drywall to the underside of the trusses & use the truss space for ducts & lighting (the floor above will be lightweight concrete on plywood sub-floor). UL assemblies do not seem to address the duct/light penetrations in such an assembly. Can I achieve a one-hour rating in such an assembly and how are penetrations addressed? Can the ducts in the truss space serve both units above and below?