Fire Resistance

I am thinking of using wood trusses for the roofing/ceiling structural systems on some houses I shall build. I remember, though, an engineer/volunteer fireman commenting back in 1989 that the connector plates are prone to expand and pop off, early on in a fire, causing catastrophic structural failure. Was this the case, and if so, has this problem been corrected?

We have a local builder wishing to use floor trusses with a 2-hour assembly. I have shown him the 2-hour design on pages 17-27 of the second edition of SBCA’s Metal Plate Connected Wood Truss Handbook. Is this assembly UL approved? If so, what is the design number?

How do you evaluate whether a metal plate connected truss is still usable after exposure to fire? Are there any recommended tests?

I have recently heard of a problem with fire-retardant-treated wood (FRTW) trusses that were manufactured and installed in 1965-1980. I was searching for more information, since my job involves the protection of property in our member school districts. I had heard that the trusses make of FRTW during that time period can or will become corrosive to the hardware and the trusses will fail.

Are there any published studies or guidelines on the fire rating of floor trusses built with 2x3 lumber?

In a small scale multi-family residential project, I'd like to use a wood truss floor-ceiling assembly to achieve a one hour separation between units. I'd like to directly attach the drywall to the underside of the trusses & use the truss space for ducts & lighting (the floor above will be lightweight concrete on plywood sub-floor). UL assemblies do not seem to address the duct/light penetrations in such an assembly. Can I achieve a one-hour rating in such an assembly and how are penetrations addressed? Can the ducts in the truss space serve both units above and below?

I need to obtain some information on fire-retardant-treated roof trusses.

I have mono trusses on either side of a firewall. I have the fire rating/wall material between them. Can I place a ridge vent above these two? Or should I use vents? How do I calculate the appropriate vent sizes and styles?

We recently received bids on a school project, which referenced UL P523. This assembly used light-gauge steel trusses. We noted on the drawing that we could accept an alternate design using wood trusses in lieu of light-gauge steel framing, if the alternate design could meet the fire ratings.

Is it possible to construct an assembly for ceiling between first and second floors using 2x with few layers of gypsum to obtain a 3-hour fire rating?