Loads

A spring Wisconsin snowstorm demonstrates how a building design practice may lead to higher risk.

An unusual design project gives this CM international exposure.

Getting information up front on sprinkler systems can ease the design process.

Finding opportunity in the growing solar panel market.

An unusual project with an uncommon shape presented the kind of design challenge truss technicians don’t see every day.
 

A little forethought can prevent the potential overstress that occurs when deflection leads to rooftop ponding.

A best practice for building designers: find a friend to check your load paths.

Lumber Design Values

No matter the species, component manufacturers (CMs) purchase and rely on the accuracy and reliability of many different lumber design properties, including: bending (Fb); shear parallel to grain (Fv), compression perpendicular to grain (Fc^), compression parallel to grain (Fc), tension parallel to grain (Ft), and modulus of elasticity (E and Emin).

As an engineer, I have noticed truss designers in some high wind states routinely using “Main Wind-Force Resisting Systems” wind pressure coefficients as opposed to “Components and Cladding” coefficients to design for wind uplift. A roof truss is not a main wind-force resisting system and would have to have a tributary area of more than 1000 sq. ft. before qualifying for the lower Primary Frame coefficients. In my experience this practice is routine.

Can I safely install 3/4 in. T&G, OSB on 2x4 trusses that are 24 in. O.C.? My roof was installed over 5/8 in. plywood without clips that have caused a lot of sagging and the shingles need replacing. I want to “fix” it one time and install architecture type shingles, but the garage is 24 ft. wide and 28 ft. long without any load bearing walls. My concern is the weight on the trusses. 5/8 in. plywood weighs 52 lbs. and the OSB weighs 78 lbs. for each 4 ft. x 8 ft. sheet. The roof will require about 84 4 ft. x 8 ft. sheets to cover, which equals about 2,184 lbs.