Design

What are the requirements for installing “valley set” overlay roof trusses? I am interested in nailing and support conditions. Some engineers ask for the bottom chord of the valley truss to be ripped to match the roof pitch of the underlying trusses. Is this necessary?

We are concerned with SBCA’s BCSI-B1 Summary Sheet which under “Notes” makes a disclaimer. Our concern is if there would be an accident with our trusses and we point out that the bracing was not placed correctly according to SBCA documentation, which is sent with every job. If the accident goes to court, how will our attorney respond when the opposing attorney points out the disclaimer, which infers that the bracing we recommend must be flawed, otherwise it would not be disclaimed?

We recently received bids on a school project, which referenced UL P523. This assembly used light-gauge steel trusses. We noted on the drawing that we could accept an alternate design using wood trusses in lieu of light-gauge steel framing, if the alternate design could meet the fire ratings.

The Corps' guide spec for wood construction requires the drawings to indicate the design forces on each truss member for the worst loading condition. Loading conditions, of course, can include wind, snow build up, and unbalanced loading, to name a few. Many A/E firms submit drawings lacking these member forces, but instead show typical loading conditions. What does the wood truss fabricator want to see – truss diagrams with maximum loads on each member? Or would he prefer to design the truss from many required loading diagrams?

I almost always see wood trusses erected with no stability bracing at points of support. It seems to me that common sense and section 3.3.3.4 of The American Wood Council’s National Design Specification for Wood Construction (NDS) require that lateral support be provided at points of bearing. Plywood decking doesn't provide any more restraint for a wood truss than it does for a roof joist. I doubt if it was a concern with short span trusses having 4 in.

How much weight can a wood truss hold, when it’s made with 2x4 material and spans 36 ft. with a 4/12 pitch. I would like to hang things from the ceiling and am wondering if it is safe. I live in an area where there are heavy snowstorms. Also, how much exposure to the weather can a truss handle before there is a problem?

I am a building inspector and I have a question on information provided on truss design drawings. What does the uplift reaction number represent? Some manufacturers are very specific and state “to provide for mechanical connection of the truss to the top plate with a connector capable of withstanding a specific load.” Others simply list the uplift reaction with no further information. These are the ones that have caused a debate as to what the number actually represents.

Can you explain drag loads and how to calculate a drag load pertaining to roof trusses?

We are currently developing a project which specifies “Seismic Design Category C.” We are an East Coast truss manufacturer and have not encountered seismic requirements before.

If trusses blew down from insufficient temporary bracing and the contractor put them back up without the knowledge of the truss manufacturer and gave the truss manufacturer a letter stating that the trusses were okay, is that sufficient? Do you know of any truss manufacturer who would accept this?