Design Documents

As an engineer, I have noticed truss designers in some high wind states routinely using “Main Wind-Force Resisting Systems” wind pressure coefficients as opposed to “Components and Cladding” coefficients to design for wind uplift. A roof truss is not a main wind-force resisting system and would have to have a tributary area of more than 1000 sq. ft. before qualifying for the lower Primary Frame coefficients. In my experience this practice is routine.

We are planning to add 1/2 in. cement board and 3/8 in. quarry tile to a kitchen floor. We need to know if the floor trusses will handle the additional weight. The floor trusses are 19.2 in. O.C. and the loading numbers are 40-10-0-5. What do these numbers mean?

What type of construction uses a fire cut truss? Could you describe a fire cut truss?

Is the truss designer or the building designer responsible for calculating snow drift loads on a roof system?

I have built a 30 ft. x 40 ft. pole barn with nine 30 ft. 2x4 7/12 pitch trusses that are 5 ft. O.C. I am planning to finish out the interior and will attach 7/16 x 4 x 8 OSB sheets to the trusses for my ceiling. Along with this, I will have to add several 2x4 nailers across the 30 ft. span between the trusses to attach the sheeting to. My question is: will these trusses have any problem supporting this ceiling? I am not planning on anything being placed in the section above the ceiling and there will be no walls or supports erected between the ceiling and the floor.

Are there any associations that have recommendations for the installation of wood trusses?

I am a structural engineer designing pool cage structures that are typically attached to the house at the fascia board. Sometimes, the structure is attached where trusses are behind the fascia board and other times there is a framed gable end overhang. Do you know of any information concerning this additional load on the trusses or overhang under design wind loads? Is there a limiting distance on the amount of overhang? I know trusses are designed for certain uplift and the pool cage will add to this uplift at design load, but what about the gable end overhangs?

We are finding it difficult to design permanent diagonal bracing for scissors trusses. The truss is often only a few feet in depth, which does not provide adequate room for diagonal bracing. Has SBCA come up with recommendations for permanent bracing of scissors trusses?

I almost always see wood trusses erected with no stability bracing at points of support. It seems to me that common sense and section 3.3.3.4 of The American Wood Council’s National Design Specification for Wood Construction (NDS) require that lateral support be provided at points of bearing. Plywood decking doesn't provide any more restraint for a wood truss than it does for a roof joist. I doubt if it was a concern with short span trusses having 4 in.

Is it possible to construct an assembly for ceiling between first and second floors using 2x with few layers of gypsum to obtain a 3-hour fire rating?